3.3.37 \(\int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx\) [237]

3.3.37.1 Optimal result
3.3.37.2 Mathematica [A] (verified)
3.3.37.3 Rubi [A] (verified)
3.3.37.4 Maple [B] (warning: unable to verify)
3.3.37.5 Fricas [A] (verification not implemented)
3.3.37.6 Sympy [F]
3.3.37.7 Maxima [F]
3.3.37.8 Giac [F]
3.3.37.9 Mupad [F(-1)]

3.3.37.1 Optimal result

Integrand size = 37, antiderivative size = 141 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {c-d} \tan (e+f x)}{\sqrt {2} \sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {c-d} f}+\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {d} f} \]

output
-arctan(1/2*a^(1/2)*(c-d)^(1/2)*tan(f*x+e)*2^(1/2)/(a+a*sec(f*x+e))^(1/2)/ 
(c+d*sec(f*x+e))^(1/2))*2^(1/2)/f/a^(1/2)/(c-d)^(1/2)+2*arctanh(a^(1/2)*d^ 
(1/2)*tan(f*x+e)/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2))/f/a^(1/2)/ 
d^(1/2)
 
3.3.37.2 Mathematica [A] (verified)

Time = 0.85 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.21 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\frac {2 \left (-\sqrt {d} \arctan \left (\frac {\sqrt {c-d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {d+c \cos (e+f x)}}\right )+\sqrt {2} \sqrt {c-d} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {d} \sin \left (\frac {1}{2} (e+f x)\right )}{\sqrt {d+c \cos (e+f x)}}\right )\right ) \cos \left (\frac {1}{2} (e+f x)\right ) \sqrt {d+c \cos (e+f x)} \sec (e+f x)}{\sqrt {c-d} \sqrt {d} f \sqrt {a (1+\sec (e+f x))} \sqrt {c+d \sec (e+f x)}} \]

input
Integrate[Sec[e + f*x]^2/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*Sec[e + f*x] 
]),x]
 
output
(2*(-(Sqrt[d]*ArcTan[(Sqrt[c - d]*Sin[(e + f*x)/2])/Sqrt[d + c*Cos[e + f*x 
]]]) + Sqrt[2]*Sqrt[c - d]*ArcTanh[(Sqrt[2]*Sqrt[d]*Sin[(e + f*x)/2])/Sqrt 
[d + c*Cos[e + f*x]]])*Cos[(e + f*x)/2]*Sqrt[d + c*Cos[e + f*x]]*Sec[e + f 
*x])/(Sqrt[c - d]*Sqrt[d]*f*Sqrt[a*(1 + Sec[e + f*x])]*Sqrt[c + d*Sec[e + 
f*x]])
 
3.3.37.3 Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.189, Rules used = {3042, 4473, 3042, 4468, 219, 4471, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^2(e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )^2}{\sqrt {a \csc \left (e+f x+\frac {\pi }{2}\right )+a} \sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4473

\(\displaystyle \frac {\int \frac {\sec (e+f x) \sqrt {\sec (e+f x) a+a}}{\sqrt {c+d \sec (e+f x)}}dx}{a}-\int \frac {\sec (e+f x)}{\sqrt {\sec (e+f x) a+a} \sqrt {c+d \sec (e+f x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right ) \sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a}}{\sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx}{a}-\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a} \sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4468

\(\displaystyle -\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a} \sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx-\frac {2 \int \frac {1}{1-\frac {a d \tan ^2(e+f x)}{(\sec (e+f x) a+a) (c+d \sec (e+f x))}}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a} \sqrt {c+d \sec (e+f x)}}\right )}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {d} f}-\int \frac {\csc \left (e+f x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (e+f x+\frac {\pi }{2}\right ) a+a} \sqrt {c+d \csc \left (e+f x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4471

\(\displaystyle \frac {2 \int \frac {1}{\frac {a (c-d) \tan ^2(e+f x)}{(\sec (e+f x) a+a) (c+d \sec (e+f x))}+2}d\left (-\frac {\tan (e+f x)}{\sqrt {\sec (e+f x) a+a} \sqrt {c+d \sec (e+f x)}}\right )}{f}+\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {d} f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {2 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {d} \tan (e+f x)}{\sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} \sqrt {d} f}-\frac {\sqrt {2} \arctan \left (\frac {\sqrt {a} \sqrt {c-d} \tan (e+f x)}{\sqrt {2} \sqrt {a \sec (e+f x)+a} \sqrt {c+d \sec (e+f x)}}\right )}{\sqrt {a} f \sqrt {c-d}}\)

input
Int[Sec[e + f*x]^2/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*Sec[e + f*x]]),x]
 
output
-((Sqrt[2]*ArcTan[(Sqrt[a]*Sqrt[c - d]*Tan[e + f*x])/(Sqrt[2]*Sqrt[a + a*S 
ec[e + f*x]]*Sqrt[c + d*Sec[e + f*x]])])/(Sqrt[a]*Sqrt[c - d]*f)) + (2*Arc 
Tanh[(Sqrt[a]*Sqrt[d]*Tan[e + f*x])/(Sqrt[a + a*Sec[e + f*x]]*Sqrt[c + d*S 
ec[e + f*x]])])/(Sqrt[a]*Sqrt[d]*f)
 

3.3.37.3.1 Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4468
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/Sq 
rt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[-2*(b/f)   Subs 
t[Int[1/(1 - b*d*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c 
 + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4471
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqr 
t[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)]), x_Symbol] :> Simp[-2*(a/(b*f)) 
Subst[Int[1/(2 + (a*c - b*d)*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + 
f*x]]*Sqrt[c + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 4473
Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*S 
qrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)]), x_Symbol] :> Simp[-a/b   Int[Cs 
c[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), x], x] + Si 
mp[1/b   Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x] 
]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
 
3.3.37.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(365\) vs. \(2(114)=228\).

Time = 5.16 (sec) , antiderivative size = 366, normalized size of antiderivative = 2.60

method result size
default \(\frac {\sqrt {2}\, \sqrt {c +d \sec \left (f x +e \right )}\, \sqrt {a \left (\sec \left (f x +e \right )+1\right )}\, \left (\ln \left (\sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}-\sqrt {c -d}\, \cot \left (f x +e \right )+\sqrt {c -d}\, \csc \left (f x +e \right )\right ) \sqrt {2}\, \sqrt {-d}-\ln \left (\frac {-2 \sqrt {2}\, \sqrt {-d}\, \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )+2 c \cos \left (f x +e \right )-2 d \cos \left (f x +e \right )+2 \sin \left (f x +e \right ) c +2 \sin \left (f x +e \right ) d -2 c +2 d}{\cos \left (f x +e \right )-1+\sin \left (f x +e \right )}\right ) \sqrt {c -d}+\ln \left (-\frac {2 \left (\sqrt {2}\, \sqrt {-d}\, \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}\, \sin \left (f x +e \right )-\sin \left (f x +e \right ) c -\sin \left (f x +e \right ) d +c \cos \left (f x +e \right )-d \cos \left (f x +e \right )-c +d \right )}{\cos \left (f x +e \right )-1-\sin \left (f x +e \right )}\right ) \sqrt {c -d}\right ) \cos \left (f x +e \right )}{f a \sqrt {c -d}\, \sqrt {-d}\, \left (\cos \left (f x +e \right )+1\right ) \sqrt {-\frac {2 \left (d +c \cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )+1}}}\) \(366\)

input
int(sec(f*x+e)^2/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
1/f/a/(c-d)^(1/2)*2^(1/2)/(-d)^(1/2)*(c+d*sec(f*x+e))^(1/2)*(a*(sec(f*x+e) 
+1))^(1/2)*(ln((-2*(d+c*cos(f*x+e))/(cos(f*x+e)+1))^(1/2)-(c-d)^(1/2)*cot( 
f*x+e)+(c-d)^(1/2)*csc(f*x+e))*2^(1/2)*(-d)^(1/2)-ln(2*(-2^(1/2)*(-d)^(1/2 
)*(-2*(d+c*cos(f*x+e))/(cos(f*x+e)+1))^(1/2)*sin(f*x+e)+c*cos(f*x+e)-d*cos 
(f*x+e)+sin(f*x+e)*c+sin(f*x+e)*d-c+d)/(cos(f*x+e)-1+sin(f*x+e)))*(c-d)^(1 
/2)+ln(-2*(2^(1/2)*(-d)^(1/2)*(-2*(d+c*cos(f*x+e))/(cos(f*x+e)+1))^(1/2)*s 
in(f*x+e)-sin(f*x+e)*c-sin(f*x+e)*d+c*cos(f*x+e)-d*cos(f*x+e)-c+d)/(cos(f* 
x+e)-1-sin(f*x+e)))*(c-d)^(1/2))*cos(f*x+e)/(cos(f*x+e)+1)/(-2*(d+c*cos(f* 
x+e))/(cos(f*x+e)+1))^(1/2)
 
3.3.37.5 Fricas [A] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 1100, normalized size of antiderivative = 7.80 \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\text {Too large to display} \]

input
integrate(sec(f*x+e)^2/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, al 
gorithm="fricas")
 
output
[1/2*(sqrt(2)*a*d*sqrt(-1/(a*c - a*d))*log((2*sqrt(2)*(c - d)*sqrt((a*cos( 
f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f*x + e))*sqrt(- 
1/(a*c - a*d))*cos(f*x + e)*sin(f*x + e) + (3*c - d)*cos(f*x + e)^2 + 2*(c 
 + d)*cos(f*x + e) - c + 3*d)/(cos(f*x + e)^2 + 2*cos(f*x + e) + 1)) + sqr 
t(a*d)*log(-(8*a*c*d*cos(f*x + e) + (a*c^2 - 6*a*c*d + a*d^2)*cos(f*x + e) 
^3 + 4*((c - d)*cos(f*x + e)^2 + 2*d*cos(f*x + e))*sqrt(a*d)*sqrt((a*cos(f 
*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f*x + e))*sin(f*x 
 + e) + 8*a*d^2 + (a*c^2 + 2*a*c*d - 7*a*d^2)*cos(f*x + e)^2)/(cos(f*x + e 
)^3 + cos(f*x + e)^2)))/(a*d*f), 1/2*(2*sqrt(2)*a*d*arctan(sqrt(2)*sqrt((a 
*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f*x + e))*c 
os(f*x + e)/(sqrt(a*c - a*d)*sin(f*x + e)))/sqrt(a*c - a*d) + sqrt(a*d)*lo 
g(-(8*a*c*d*cos(f*x + e) + (a*c^2 - 6*a*c*d + a*d^2)*cos(f*x + e)^3 + 4*(( 
c - d)*cos(f*x + e)^2 + 2*d*cos(f*x + e))*sqrt(a*d)*sqrt((a*cos(f*x + e) + 
 a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + d)/cos(f*x + e))*sin(f*x + e) + 8 
*a*d^2 + (a*c^2 + 2*a*c*d - 7*a*d^2)*cos(f*x + e)^2)/(cos(f*x + e)^3 + cos 
(f*x + e)^2)))/(a*d*f), 1/2*(sqrt(2)*a*d*sqrt(-1/(a*c - a*d))*log((2*sqrt( 
2)*(c - d)*sqrt((a*cos(f*x + e) + a)/cos(f*x + e))*sqrt((c*cos(f*x + e) + 
d)/cos(f*x + e))*sqrt(-1/(a*c - a*d))*cos(f*x + e)*sin(f*x + e) + (3*c - d 
)*cos(f*x + e)^2 + 2*(c + d)*cos(f*x + e) - c + 3*d)/(cos(f*x + e)^2 + 2*c 
os(f*x + e) + 1)) + 2*sqrt(-a*d)*arctan(-2*sqrt(-a*d)*sqrt((a*cos(f*x +...
 
3.3.37.6 Sympy [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int \frac {\sec ^{2}{\left (e + f x \right )}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )} \sqrt {c + d \sec {\left (e + f x \right )}}}\, dx \]

input
integrate(sec(f*x+e)**2/(a+a*sec(f*x+e))**(1/2)/(c+d*sec(f*x+e))**(1/2),x)
 
output
Integral(sec(e + f*x)**2/(sqrt(a*(sec(e + f*x) + 1))*sqrt(c + d*sec(e + f* 
x))), x)
 
3.3.37.7 Maxima [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{\sqrt {a \sec \left (f x + e\right ) + a} \sqrt {d \sec \left (f x + e\right ) + c}} \,d x } \]

input
integrate(sec(f*x+e)^2/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, al 
gorithm="maxima")
 
output
integrate(sec(f*x + e)^2/(sqrt(a*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c 
)), x)
 
3.3.37.8 Giac [F]

\[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int { \frac {\sec \left (f x + e\right )^{2}}{\sqrt {a \sec \left (f x + e\right ) + a} \sqrt {d \sec \left (f x + e\right ) + c}} \,d x } \]

input
integrate(sec(f*x+e)^2/(a+a*sec(f*x+e))^(1/2)/(c+d*sec(f*x+e))^(1/2),x, al 
gorithm="giac")
 
output
integrate(sec(f*x + e)^2/(sqrt(a*sec(f*x + e) + a)*sqrt(d*sec(f*x + e) + c 
)), x)
 
3.3.37.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^2(e+f x)}{\sqrt {a+a \sec (e+f x)} \sqrt {c+d \sec (e+f x)}} \, dx=\int \frac {1}{{\cos \left (e+f\,x\right )}^2\,\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}\,\sqrt {c+\frac {d}{\cos \left (e+f\,x\right )}}} \,d x \]

input
int(1/(cos(e + f*x)^2*(a + a/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))^(1/2 
)),x)
 
output
int(1/(cos(e + f*x)^2*(a + a/cos(e + f*x))^(1/2)*(c + d/cos(e + f*x))^(1/2 
)), x)